摘要:
The number of nonzero weights of a linear code is essential in coding theory as it unveils salient properties of the code, such as its covering radius. In this paper, we establish two upper bounds on the number of nonzero weights of a linear code with prescribed automorphism. Our bounds are applicable for almost all linear codes and tighter than previously known bounds. Examples confirm that our bounds are sharp on numerous occasions. In addition, we give an infinite family of linear codes that attain our bounds with equality.
报告人简介
罗高骏,南京航空航天大学,副研究员。2019年博士毕业于南京航空航天大学,导师曹喜望教授。2021年至2024年于新加坡南洋理工大学从事博士后研究工作,合作导师Ling San教授。主要研究方向为代数编码理论、序列设计与量子信息。近五年,以第一/通讯作者发表SCI检索论文20余篇,包括IEEE Trans系列10篇。曾获得江苏省科学技术奖。2022年至今,担任期刊COAM(《Computational and Applied Mathematics》)的 Associate Editor。曾应邀访问土耳其Sabanci大学,韩国庆北国立大学。
报告时间:2023年4月17日上午10:00-11:00
报告地点:西南交通大学犀浦校区7教7510
承办单位:信息科学与技术学院