摘要:
For a simple-root lambda-constacyelic code C over F_q, let <ρ>(resp. <ρ,M>) be the subgroup of the automorphism group of C generated by the cyclic shift ρ (resp. the subgroup generated by the cyclic shift ρ and the scalar multiplication group M). Let N_G(C^*) be the mumber of orbits of a subgroup G of the automorphism group of C acting on C^* = C\{0}. In this talk, we show explicit formulas for N_ρ(C^*) and N_<ρ>(C^*). Consequently, we derive a upper bound on the number of non-zero weights of C, We present some irreducible and reducible lambda-constacyclic codes, which show that the upper bound is tight. A sufficient condition to guarantee N_ρ(C^*)=N_<ρ>(C^*) is provided, This is a joint work with Hanglong Zhang.
报告人简介
曹喜望,南京航空航天大学理学院教授,博士生导师。北京大学获得博士学位。研究方向是有限域及其应用,在差集、指数和、有限域上的多项式、量子信息处理以及代数编码方面做出了出色的工作,其研究成果发表在相关领域的期刊IEEE Transaction on Information Theory、Finite Fields and their Applications、Design Codes and Cryptography、Science China(Mathematics)等,发表学术论文近200篇,其中SCI检索论文176篇。曹喜望教授先后多次访问过Sydney大学、南洋理工大学,香港科技大学、台湾中央研究院、北京国际数学中心、南开大学陈省身数学研究所等。2010年入选江苏省“青蓝工程”学术带头。主持完成国家自然科学基金项目5项和省部级科研项目多项。2017年获得江苏省科学技术奖。