题目:ANALYSIS OF ROTH-LEMPEL CODES
摘要:Near maximum distance separable (NMDS) codes have been widely used in various fields such as communication systems, data storage, and quantum codes due to their algebraic properties and excellent error-correcting capabilities. This report focuses on Roth-Lempel codes and establishes necessary and sufficient conditions for them to be NMDS and further completely determine its weight distributions . Besides, we illustrate the linearly inequivalence of Roth-Lempel codes and NMDS codes of elliptic curve type when their corresponding length exceed4(q+2q+1)5. Finally, we show that some special linear codes of elliptic-curve type are not equivalent to Roth-Lempel code C by Schur product.
个人简介:周海燕,南京师范大学数学科学学院教授、博士生导师、副院长,曾任国家自然科学基金委数理学部数学处流动项目主任。研究领域为代数数论以及在信息安全中的应用,已发表论文三十余篇,主持和参加国家自然科学基金项目5项。曾在美国加州大学欧文分校、加拿大麦克马斯特大学、英国剑桥大学、印度ICTS和意大利ICTP进行学术访问。
报告时间:12月23日上午11:10-12:00
报告地点:西南交通大学犀浦校区7510